For a certain organ pipe three successive resonance frequencies are observed at $425\, Hz,595 \,Hz$ and $765 \,Hz$ respectively. If the speed of sound in air is $340 \,m/s$, then the length of the pipe is ..... $m$
$2$
$0.4$
$1$
$0.2$
A train is moving towards a stationary observer. Which of the following curve best represents the frequency received by observer $f$ as a function of time ?
A string of mass $2.5\, kg$ under some tension. The length of the stretched string is $20\, m$. If the transverse jerk produced at one end of the string takes $0.5\, s$ to reach the other end, tension in the string is .... $N$
A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ...... $Hz$
Two identical sounds $S_1$ and $S_2$ reach at a point $P$ in phase. The resultant loudness at point $P$ is $n\,\, dB$ higher than the loudness of $S_1$. The value of $n$ is
A car $P$ approaching a crossing at a speed of $10\, m/s$ sounds a horn of frequency $700\, Hz$ when $40\, m$ in front of the crossing. Speed of sound in air is $340\, m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\, m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is .... $Hz$